Image Recognition Method for Pitching Fingers of Basketball Players Based on Symmetry Algorithm

Author:

Chen Wanquan1ORCID

Affiliation:

1. School of Physical Education, Xianyang Vocational Technical College, Xianyang 712000, China

Abstract

In the basketball game, the accuracy and standardization of pitching are directly related to the score. So it is very important to analyze the pitching figure movement to have a better positioning of the fingers. There are limited techniques to recognize the movement. The human motion recognition method is one of them. It utilizes the spatiotemporal image segmentation and interactive region detection to recognize images of pitching finger movement of basketball players. This method has a limitation that the symmetrical information of the human body and sphere cannot be excavated, which leads to certain errors in recognition effect. This paper presents a method of recognizing pitching finger movement of basketball players based on symmetry algorithm, constructs an acquisition model, carries out edge contour detection and adaptive feature segmentation of images of pitching finger movement of basketball players, and uses a fixed threshold to segment finger image to extract players’ hand contour and locate the middle axis of the finger. On this basis, the symmetry recognition method based on nematode recognition algorithm is used to recognize the symmetry of basketball pitching finger movement image and complete the accurate recognition of basketball pitching finger movement image. The experimental results show that the proposed method can effectively recognize the basketball player’s finger movement image. The average recognition accuracy is 98%, the growth rate of recognition speed is 98%, and the maximum recognition time is 12 s. The robustness of the proposed method is 0.45.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference33 articles.

1. Baseball4D: a tool for baseball game reconstruction & visualization;C. Dietrich

2. StatCast Dashboard: Exploration of Spatiotemporal Baseball Data

3. Summarizing baseball plays into a static visualization;J. P. Ono,2018

4. Human action recognition method based on spatio-temporal image segmentation and interactive area detection;J. Zhang;Application Research of Computers,2017

5. A tracking system for baseball game reconstruction;N. Wiedemann

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3