A Multiscale Assessment of Three Satellite Precipitation Products (TRMM, CMORPH, and PERSIANN) in the Three Gorges Reservoir Area in China

Author:

Zhang Tianyu1,Yang Yu2,Dong Zeyu2,Gui Shu2ORCID

Affiliation:

1. Chongqing Climate Center, Chongqing, China

2. Department of Atmospheric Sciences, Yunnan University, Kunming, China

Abstract

This study evaluated three satellite precipitation products, namely, TRMM, CMORPH, and PERSIANN, over the Three Gorges Reservoir area in China at multiple timescales. The assessment covered the following aspects: the rainfall amount, extreme precipitation, and the rainy-day detection ability. Results indicated that the CMORPH and TRMM estimates of rainfall amount were reasonably good, but the PERSIANN showed a larger bias than the other two satellite products. The data precision of CMORPH was slightly better than TRMM. All three satellite products could reproduce the diurnal cycle of rainfall, i.e., more precipitation in the morning than in the evening. The CMORPH estimates were closest to the gauge observation at 3-hourly and 12-hourly timescales. The data accuracy of CMORPH data was better during the night than in the daytime. At daily timescale, the quality of TRMM data was slightly inferior to the CMORPH, whereas the PERSIANN still differed much from the ground observation. At monthly, seasonally, and yearly timescales, the performance of TRMM was comparable to CMORPH, and both of them were obviously superior to PERSIANN. The rainy-day detection ability of CMORPH and TRMM was much better than PERSIANN. The PERSIANN data tended to overestimate the light rainy days but underestimate the heavy and torrential rainy days. The CMORPH data overestimated mainly the moderate rainy days. The TRMM data overestimated the occurrence frequency of heavy rain during the winter half year (from October to the next March). Both the CMORPH and the TRMM provided good estimates of the regional average rainy days. The data accuracy of CMORPH was slightly better than TRMM, and both were far better than the PERSIANN with respect to the rainfall amount and rainy-day detection. Nevertheless, all satellite estimates showed large biases of extreme precipitation. The CMORPH estimate of the maximum 5-day precipitation was the best of all. Both the CMORPH and TRMM data overestimated the 95th percentile of precipitation, but the PERSIANN data severely underestimated it. The PERSIANN estimates of extreme precipitation amount were the best of all during the daytime, nighttime, and the whole day. The above evaluation results could facilitate the application of satellite rainfall products and provide a reference to precipitation-related studies.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3