Experimental Study on the Relationship between the Natural Frequency and the Corrosion in Reinforced Concrete Beams

Author:

Zhang Liye1ORCID,Sun Limin23ORCID,Dong Lijuan4ORCID

Affiliation:

1. Research Institute of Highway Ministry of Transport, Beijing 100088, China

2. Department of Bridge Engineering, Tongji University, Shanghai 200092, China

3. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China

4. Beijing Baojiaheng Infrastructure Investment Co., Ltd., Beijing 100020, China

Abstract

Due to many nondamage factors such as temperature, humidity, carbonation, and corrosion effects on natural frequency, the key problem of the application frequency-based method to detect damage is to reveal the rules of these factors affect natural frequency and further to eliminate their effects. The long-term characteristics of reinforced concrete structures require a lot of attention, especially in corrosive environment. In this paper, an experimental investigation was conducted to study the deflection and natural frequency of reinforced concrete beam in a marine environmental chamber for six corrosion stages (accelerated corrosion for 0, 20, 40, 70, 100, and 140 days). The experimental results demonstrated that deflection increases with corrosion time, while natural frequency decreases with corrosion time. Based on the accelerate corrosion test data of reinforced concrete beams, the general expression of the relationship between corrosion depth and natural frequency has been established through the fitting curve method. The polynomial model has been selected for establishing the relationship between steel corrosion depth (including the main reinforcement and stirrup) and natural frequency. The reason for selecting the polynomial model is that the sum of squares due to error (SSE) is closer to 0 and the coefficient of multiple determination (R-square) is closer to 1. This investigations help to discriminate the cause of reinforced concrete beams natural frequency change, to eliminate nondamage factors affects, and to apply many structural damage identification methods effectively.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review on Analysis of Damage Diagnosis and the Vibration Characteristics of Steel Bridge Structures;IOP Conference Series: Earth and Environmental Science;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3