Sky Image-Based Localized, Short-Term Solar Irradiance Forecasting for Multiple PV Sites via Cloud Motion Tracking

Author:

Dissawa Lasanthika H.1ORCID,Godaliyadda Roshan I.1,Ekanayake Parakrama B.1,Agalgaonkar Ashish P.2,Robinson Duane2,Ekanayake Janaka B.1,Perera Sarath2

Affiliation:

1. Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, Sri Lanka

2. School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, Australia

Abstract

Power generation through solar photovoltaics has shown significant growth in recent years. However, high penetration of solar PV creates power system operational issues as a result of solar PV variability and uncertainty. Short-term PV variability mainly occurs due to the intermittency of cloud cover. Therefore, to mitigate the effects of PV variability, a sky-image-based, localized, global horizontal irradiance forecasting model was introduced considering the individual cloud motion, cloud thicknesses, and the elevations of clouds above the ground level. The proposed forecasting model works independently of any historical irradiance measurements. Two inexpensive sky camera systems were developed and placed in two different locations to obtain sky images for cloud tracking and cloud-based heights. Then, irradiance values for onsite and for a PV site located with a distance of 2 km from the main camera were forecasted for 1 minute, 5 minutes, and 15 minutes ahead of real-time. Results show that the three-level cloud categorization and the individual cloud movement tracking method introduced in this paper increase the forecasting accuracy. For partially cloudy and sunny days, the forecasting model for 15 min forecasting time interval achieved a positive skill factor concerning the persistent model. The accuracy of determining the correct irradiance state for a 1 min forecasting time interval using the proposed model is 81%. The average measures of RMSE, MAE, and SF obtained using the proposed method for 15 min forecasting time horizon are 101 Wm-2, 64 Wm-2, and 0.26, respectively. These forecasting accuracy levels are much higher than the other benchmarks considered in this paper.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Reference45 articles.

1. Renewable energy — the way forward

2. Renewables 2019 global status report;REN21

3. Australian Photovoltaic Institute • Market Analyses

4. Australian Energy Update 2020|energy.gov.au

5. Effect of manual tilt adjustments on incident irradiance on fixed and tracking solar panels

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3