Variationally Improved Bézier Surfaces with Shifted Knots

Author:

Ahmad Daud1ORCID,Hassan Kanwal1,Mahmood M. Khalid1,Ali Javaid2,Khan Ilyas3ORCID,Fayz-Al-Asad M.4ORCID

Affiliation:

1. Department of Mathematics, University of the Punjab, Lahore, Pakistan

2. Department of Mathematics, Govt. College Township, Affiliated Institute of University of the Punjab, Lahore, Pakistan

3. Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia

4. Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh

Abstract

The Plateau-Bézier problem with shifted knots is to find the surface of minimal area amongst all the Bézier surfaces with shifted knots spanned by the admitted boundary. Instead of variational minimization of usual area functional, the quasi-minimal Bézier surface with shifted knots is obtained as the solution of variational minimization of Dirichlet functional that turns up as the sum of two integrals and the vanishing condition gives us the system of linear algebraic constraints on the control points. The coefficients of these control points bear symmetry for the pair of summation indices as well as for the pair of free indices. These linear constraints are then solved for unknown interior control points in terms of given boundary control points to get quasi-minimal Bézier surface with shifted knots. The functional gradient of the surface gives possible candidate functions as the minimizers of the aforementioned Dirichlet functional; when solved for unknown interior control points, it results in a surface of minimal area called quasi-minimal Bézier surface. In particular, it is implemented on a biquadratic Bézier surface by expressing the unknown control point P 11 as the linear combination of the known control points in this case. This can be implemented to Bézier surfaces with shifted knots of higher degree, as well if desired.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3