Compact Vitis vinifera-Inspired Ultrawideband Antenna for High-Speed Communications

Author:

Abolade Jeremiah O.1ORCID,Konditi Dominic B. O.2,Dharmadhikary Vasant M.3

Affiliation:

1. Department of Electrical Engineering, Pan African University, Institute for Basic Sciences, Technology and Innovation, Nairobi, Kenya

2. School of Electrical and Electronic Engineering, The Technical University of Kenya, Nairobi, Kenya

3. Department of Electrical and Electronic Engineering, Dedan Kimathi University of Technology, Nyeri, Kenya

Abstract

A new compact ultrawideband (UWB) bioinspired antenna is presented in this work. The proposed antenna consists of a vine leaf (Vitis vinifera) shape as the radiating patch, defected ground structure (DGS), and a vertical rectangular slot (VRS) on the ground plane. The vine leaf shape is realized from a circular patch (initiator) in this work. The proposed antenna is built on an FR4 substrate with a dielectric constant of 4.4, a loss tangent of 0.02, and a thickness of 1.5 mm. The total dimension of the proposed bioinspired antenna is 35 × 27.6 mm2. The proposed antenna has a fractional bandwidth of 115.43% (3.7 GHz–13.8 GHz) at 10 dB return loss, a radiation efficiency between 78% and 97%, a peak gain of 6.7 dB, and a stable radiation pattern. The contributions of this work to the existing literature are as follows: (i) the investigation of a vine leaf shape for UWB antenna application; (ii) the adaptation of the conventional monopole patch antenna design equation to determine the lower edge frequency (LEF) of an arbitrary shape monopole antenna; (iii) the presentation of a compact UWB antenna with high fractional bandwidth compared with recent works in the literature, and (iv) the use of FR4 substrate to achieve a peak radiation efficiency of 97% with a compact structure.

Funder

African Union

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3