Health Risk Assessment of Trace Elements in Soil for People Living and Working in a Mining Area

Author:

Focus Erasto1,Rwiza Mwemezi J.1ORCID,Mohammed Najat K.2,Banzi Firmi P.3ORCID

Affiliation:

1. The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania

2. Dar Es Salaam Institution of Technology (DIT), P.O. Box 2525, Dar Es Salaam, Tanzania

3. Tanzania Atomic Energy Commission (TAEC), P.O. Box 743, Arusha, Tanzania

Abstract

The present study used soils collected from a small-scale gold mine area to determine the health risks due to trace elements to the at-risk population in the study area. The work involved 74 soil samples from four sampling categories: 29 samples were from the mining pits (MD), 18 samples from the first washing area (WA), 17 samples from the second washing area (WB), and 10 samples from the control area (C). All samples were analyzed for Cr, Cu, As, Pb, Cd, Co, Ni, Zn, and Hg using the Energy Dispersive X-Ray Florescence (ED-XRF) method. Trace element levels were found to vary across the four sampling categories. The concentrations of trace elements recorded from different sampling categories varied in an increasing order of MD > WA > WB > C. Mercury was detected in the highest levels (max. 3.72 ± 0.15) at WB while it was not detected in the samples from C. Samples from MD indicated that Cu (max. 737.66 ± 1.3 mg/kg) was found in the highest levels whereas Hg (mean = 0.007 mg/kg) was the lowest. At WA, Cu (max. = 178.97 ± 2.46 mg/kg) registered the highest average concentration while Hg (mean = 0.05 mg/kg) had the lowest concentration. For WB, Cu (max. = 230.66 ± 3.99 mg/kg) was found in the highest concentration. The hazard index value for all exposure routes was found to be 1.77, making noncarcinogenic effects significant to the adult population. For children, the hazard index value was 9.11, showing a severe noncarcinogenic effect on children living in the study area. For the noncancer effects through the inhalation pathway, the risk posed by Ni, Cu, Zn, and Pb was negligible for both adults and children, while Co posed the highest noncancer risk for children. Cobalt also indicated the highest noncancer risk for children through the dermal pathway, while As indicated the highest noncancer risk to children through ingestion. For the cancer risk, the adults were more at risk compared to children, except for As and Co through the dermal pathway posing the highest threat. Trace element concentrations, hazard quotient, and hazard index values indicated that the area was polluted and that noncarcinogenic and carcinogenic effects on residents and miners were significant. Therefore, there is a need to put in place mining regulations aimed at protecting the at-risk human population in the study area.

Funder

Tanzania Government

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference34 articles.

1. The environmental effects of effluent disposal at gold mines in Zimbabwe: a case study of tiger reef mine in kwekwe;S. Jerie;Journal of Sustainable Development in Africa,2010

2. Distribution of Heavy Metals in Soils in the Vicinity of the Proposed Mkuju Uranium Mine in Tanzania

3. A biological function for cadmium in marine diatoms

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3