Activation of Jordanian Bentonite by Hydrochloric Acid and Its Potential for Olive Mill Wastewater Enhanced Treatment

Author:

Al-Essa Khansaa1ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science, Jerash University, Jerash 26150, Jordan

Abstract

Jordanian bentonite was activated by hydrochloric acid at room temperature. FTIR, XRD, TGA, and BET surface area analyses of the samples were carried out to examine the structure of bentonite before and after acid activation. It is found that the octahedral cations were removed, which altered the chemical composition of the bentonite. Difference of surface area was noticed (66.2 to 287.8 m2 g−1), which was caused by structural changes in the bentonite. We aimed to investigate the effectiveness of activated bentonite in OMWW treatment. Batch and column techniques were applied. Crude and treated OMWW samples were characterized; physiochemical parameters, total phenolic compounds, and heavy metal ions concentrations were measured. Several parameters that affected the adsorption capacity were studied: the pH value of the solution, temperature, and the adsorbent dose. It was found that the maximum removal of total phenolic compounds and heavy metal ions (Zn, Fe, and Mn) was at pH 6. Adsorption capacity of phenolic compounds was enhanced with an increase in the temperature of the solution and also with the adsorbent dose. The optimum adsorbent concentration needed for the maximum removal of total phenolic compounds is 1 g of activated bentonite/0.01 L of OMWW. The percentage removal exceeded 99% for Zn, Fe, and Mn ions, while it reached 65.2 and 61.5 for K+ and Na+ ions, respectively. Finally, the percentage removal of pollutants was increased by using activated bentonite. This study will provide valuable insight into the effect of activated bentonite towards the treatment and recyclability of OMWW, which is essential for the local olive mill industry.

Funder

Support to Research and Technological Development & Innovation Initiatives and Strategies in Jordan (SRTD II)

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3