Affiliation:
1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
Abstract
The fault diagnosis method of bearing based on lifting wavelet transform (LWT)-self-adaptive phase space reconstruction (SPSR)-singular value decomposition (SVD)-based relevance vector machine (RVM) with binary gravitational search algorithm (BGSA) is presented in this study, among which LWT-SPSR-SVD (LSS) is presented for feature extraction of the bearing vibration signal, the dynamic characteristics of lifting wavelet coefficients' (LWCs') reconstructed signals of the bearing vibration signal can be reflected by SPSR for LWCs' reconstructed signals of the bearing vibration signal, and BGSA is used to select the embedding space dimension and time delay of phase space reconstruction (PSR) and kernel parameter of RVM. In order to show the superiority of LWT-SPSR-SVD-based RVM with BGSA (LSS-BGSA-RVM), the traditional RVM trained by the training samples with the features based on LWT-SVD (LS-RVM) is used to compare with the proposed LSS-BGSA-RVM method. The experimental result demonstrates that compared with LS-RVM, LSS-BGSA-RVM can achieve the higher diagnosis accuracy for bearing.
Funder
Fundamental Research Funds for the Central Universities
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献