Fault Diagnosis of Bearing by Utilizing LWT-SPSR-SVD-Based RVM with Binary Gravitational Search Algorithm

Author:

Fei Sheng-wei1ORCID

Affiliation:

1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China

Abstract

The fault diagnosis method of bearing based on lifting wavelet transform (LWT)-self-adaptive phase space reconstruction (SPSR)-singular value decomposition (SVD)-based relevance vector machine (RVM) with binary gravitational search algorithm (BGSA) is presented in this study, among which LWT-SPSR-SVD (LSS) is presented for feature extraction of the bearing vibration signal, the dynamic characteristics of lifting wavelet coefficients' (LWCs') reconstructed signals of the bearing vibration signal can be reflected by SPSR for LWCs' reconstructed signals of the bearing vibration signal, and BGSA is used to select the embedding space dimension and time delay of phase space reconstruction (PSR) and kernel parameter of RVM. In order to show the superiority of LWT-SPSR-SVD-based RVM with BGSA (LSS-BGSA-RVM), the traditional RVM trained by the training samples with the features based on LWT-SVD (LS-RVM) is used to compare with the proposed LSS-BGSA-RVM method. The experimental result demonstrates that compared with LS-RVM, LSS-BGSA-RVM can achieve the higher diagnosis accuracy for bearing.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3