Shaking Table Test Study on the Earthquake Behavior of High-Speed Railway Bridge Pier with Rounded Rectangular Cross Section

Author:

Kang Xin1ORCID,Zuo Yongjian23ORCID,Zeng Leqiao1,Peng Linna1,Wang Qiliang1,Wang Xiaoxiang1,Deng Libin1,Hu Jia1,Li Zhuo1,Li Likun4

Affiliation:

1. Hunan Construction Investment Group Co. LTD, Changsha 410075, China

2. School of Civil Engineering, Central South University, Changsha 410075, China

3. National Engineering Laboratory for High Speed Railway Construction, Changsha 410075, China

4. China MCC22 Group Corporation LTD, Tangshan 063000, China

Abstract

Rounded rectangular cross section piers were widely used for high-speed railway (HSR) bridges in China. However, the performance of such piers under seismic scenarios has not been well studied. To study the earthquake behavior and damage of rounded rectangular cross section piers under different intensities of earthquake excitation, nine scaled pier specimens were constructed and tested on the shaking table. Experimental results show that the specimen remains elastic (no or slight damaged) for all experimental earthquake scenarios (from 0.45 g to 0.96 g). Finite element (FE) models were developed and validated by the experimental results. Using this FE model, the damage levels of these specimens under severe earthquake excitations (from 1.05 g to 1.95 g) were quantified. Numerical results show that the specimen in transverse direction shows no or slight damage, while repairable damage can be seen in longitudinal direction as the earthquake intensity increases from 1.05 g to 1.65 g. Repairable and unrepairable damage can be seen in transverse and longitudinal direction, respectively, as the earthquake intensity increases to 1.95 g. Researchers can make good use of these findings for better earthquake design or protection of this type of HSR piers in the future.

Funder

Central South University

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3