Comparison of Periodic Flow Fields in a Radial Pump among CFD, PIV, and LDV Results

Author:

Feng Jianjun1,Benra F.-K.1,Dohmen H. J.1

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, University of Duisburg-Essen, 47048 Duisburg, Germany

Abstract

The interaction between the impeller and the diffuser is considered to have a strong influence on the unsteady flow in radial pumps. In this paper, the unsteady flow in a low specific speed radial diffuser pump has been simulated by the CFD code CFX-10. Both Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) measurements have been conducted to validate the CFD results. Both the phase-averaged velocity fields and the turbulence fields obtained from different methods are presented and compared, in order to enhance the understanding of the unsteady flow caused by the relative motion between the rotating impeller and the stationary diffuser. The comparison of the results shows that PIV and LDV give nearly the same phase-averaged velocity fields, but LDV predicts the turbulence much clearer and better than PIV. CFD underestimates the turbulence level in the whole region compared with PIV and LDV but gives the same trend.

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3