Stochastic Finite Element Simulation of Uncertain Structures Subjected to Earthquake

Author:

Chakraborty Subrata1,Dey Santi Sekhar2

Affiliation:

1. Department of Civil Engineering, Bengal Engineering College (Deemed Univ.) Shibpur, Howrah 711103, India

2. Department of Civil Engineering, Indian Institute of Technology, Kharagpur, 721302, India

Abstract

In present study, the stochastic finite element simulation based on the efficient Neumann expansion technique is extended for the analysis of uncertain structures under seismically induced random ground motion. The basic objective is to investigate the possibility of applying the Neumann expansion technique coupled with the Monte Carlo simulation for dynamic stochastic systems upto that extent of parameter variation after which the method is no longer gives accurate results compared to that of the direct Monte carlo simulation. The stochastic structural parameters are discretized by the local averaging method and then simulated by Cholesky decomposition of the respective covariance matrix. The earthquake induced ground motion is treated as stationary random process defined by respective power spectral density function. Finally, the finite element solution has been obtained in frequency domain utilizing the advantage of Neumann expansion technique.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3