Research on a Machine Learning-Based Method for Assessing the Safety State of Historic Buildings

Author:

Peng Xiao-Hong1ORCID,Zhang Zi-Hao2

Affiliation:

1. School of Architecture, Anhui Science and Technology University, Bengbu, Anhui 233000, China

2. School of Architecture, South China University of Technology, Guangzhou, Guangdong 510000, China

Abstract

Historic and protected buildings are increasingly valued due to their valuable historical and cultural value. The assessment of the safety state of historic buildings has received more attention. Emerging machine learning algorithms, with their excellent computational performance, provide new ideas and new means to solve practical problems in various fields. Therefore, this paper proposes a method for assessing the safety state of historic buildings based on machine learning techniques. Firstly, based on the analysis of the characteristics of historical buildings and common security problems, the application of wireless sensor networks to the security monitoring of historical buildings is proposed in order to improve the automation of monitoring. Then, in order to improve the accuracy of the assessment, a combination of kernel canonical correlation analysis (KCCA) and support vector machine (SVM) is used to establish the security monitoring model. The experimental results show that by choosing a suitable KCCA function, the redundant features of the data can be reduced while the comprehensiveness of the building structure identification features can be retained, thus effectively improving the prediction accuracy of the SVM. The KCCA-SVM model can accurately predict the physical quantities such as relative structural displacement of historical buildings with good reliability.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3