Affiliation:
1. Physics and Applied Mathematics Unit, Physics and Earth Sciences Division, Indian Statistical Institute, 203 Barrackpore Trunk Road, Calcutta 700 108, India
Abstract
This paper is concerned with two-dimensional unsteady motion of water waves generated by an initial disturbance created at an ice sheet covering the water. The ice cover is modeled as a thin elastic plate. Using linear theory, the problem is formulated as an initial value problem for the velocity potential describing the motion in the liquid. In the mathematical analysis, the Laplace and Fourier transform techniques have been utilized to obtain the depression of the ice-covered surface in the form of an infinite integral. For the special case of initial disturbance concentrated at the origin, taken on the ice cover, this integral is evaluated asymptotically by the method of a stationary phase for a long time and large distance from the origin. The form of the ice-covered surface is graphically depicted for two types of initial disturbances.
Subject
Mathematics (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献