Wireless Sensor Network Cluster Head Selection and Short Routing Using Energy Efficient ElectroStatic Discharge Algorithm

Author:

Jagan G. C.1ORCID,Jesu Jayarin P.2

Affiliation:

1. Faculty of Electronics Engineering, Sathyabama Institute of Science and Technology, Chennai, India

2. Department of Information Technology, Jeppiaar Engineering College, Chennai, India

Abstract

Wireless sensor networks attract so much attention in current IoT-enabled industrial and domestic applications having either homogeneous or heterogeneous sensors deployed to acquire information of intent. WSNs are designed to operate using self-powered sensor nodes as their choice of application is geographic critical. Such nodes must support energy efficiency so that network longevity becomes high. Cluster head selection plays a crucial stage in a WSN architecture which mainly focuses on the minimization of network energy consumption. It groups sensor nodes in such a way that a sophisticated network cluster is formed to have enhanced life time besides a low power consumption. A popular clustering technique, known as LEACH and its variants, is found to be energy efficient compared to its counterparts. The authors propose a novel fully connected energy efficient clustering (FCEEC) mechanism using the electrostatic discharge algorithm to establish a fully connected network with shortest path routing from sensor nodes (SNs) to cluster head (CH) in a multihop environment. The proposed electrostatic discharge algorithm (ESDA) enhances network life time while attaining energy efficient full connectivity between sensor nodes. As a result of ESD, the dead node count is reduced significantly so that the network longevity is increased. In the end, simulation results exhibited improved performance metrics such as energy efficiency, dead node count, packet delivery, and network latency compared to certain conventional CH selection approach.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

Reference30 articles.

1. Wireless sensor networks: applications and challenges of ubiquitous sensing

2. A Survey on Topology Control in Wireless Sensor Networks: Taxonomy, Comparative Study, and Open Issues

3. Overview of wireless sensor networks;C. Li;Journal of Computer Research and Development,2005

4. Clustering in sensor networks: A literature survey

5. Clusterhead selection in clustering algorithms for wireless sensor networks: a survey;B. P. Deosarkar

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3