Groundwater Quality: The Application of Artificial Intelligence

Author:

Al-Adhaileh Mosleh Hmoud12ORCID,Aldhyani Theyazn H. H.13ORCID,Alsaade Fawaz Waselallah14ORCID,Al-Yaari Mohammed15ORCID,Albaggar Ali Khalaf Ahmed6ORCID

Affiliation:

1. Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al Ahsa 31982, Saudi Arabia

2. Deanship of E-learning and Distance Education King Faisal Unversity, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia

3. Applied College in Abqaiq, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia

4. College of Computer Science and Information Technology, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia

5. Chemical Engineering Department, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia

6. Department of Biology, Faculty of Sciences and Arts in Baljurashi, Albaha University, PO. Box: 335, Zip Code: 22888, Al Bahah, Saudi Arabia

Abstract

Humans and all other living things depend on having access to clean water, as it is an indispensable essential resource. Therefore, the development of a model that can predict water quality conditions in the future will have substantial societal and economic value. This can be accomplished by using a model that can predict future water quality circumstances. In this study, we employed a sophisticated artificial neural network (ANN) model. This study intends to develop a hybrid model of single exponential smoothing (SES) with bidirectional long short-term memory (BiLSTM) and an adaptive neurofuzzy inference system (ANFIS) to predict water quality (WQ) in different groundwater in the Al-Baha region of Saudi Arabia. Single exponential smoothing (SES) was employed as a preprocessing method to adjust the weight of the dataset, and the output from SES was processed using the BiLSTM and ANFIS models for predicting water quality. The data were randomly divided into two phases, training (70%) and testing (30%). Efficiency statistics were used to evaluate the SES-BiLSTM and SES-ANFIS models’ prediction abilities. The results showed that while both the SES-BiLSTM and SES-ANFIS models performed well in predicting the water quality index (WQI), the SES-BiLSTM model performed best with accuracy (R = 99.95% and RMSE = 0.00910) at the testing phase, where the performance of the SES-ANFIS model was R = 99.95% and RMSE = 2.2941 × 100-07. The findings support the idea that the SES-BilSTM and SES-ANFIS models can be used to predict the WQI with high accuracy, which will help to enhance WQ. The results demonstrated that the SES-BiLSTM and SES-ANFIS models’ forecasts are accurate and that both seasons’ performances are consistent. Similar investigations of groundwater quality prediction for drinking purposes should benefit from the proposed SES-BiLSTM and SES-ANFIS models. Consequently, the results demonstrate that the proposed SES-BiLSTM and SES-ANFIS models are useful tools for predicting whether the groundwater in Al-Baha city is suitable for drinking and irrigation purposes.

Funder

King Faisal University

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3