Study of the Frost Resistance of HDFC Based on a Response Surface Model and GM (1,1) Model

Author:

Liu Zeli1ORCID,Jiang Jiuhong1ORCID,Xu Ziling1ORCID

Affiliation:

1. School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China

Abstract

Taking high ductility concrete (HDFC) as a research object, the frost resistance of HDFC in freeze-thaw cycle tests is studied, accurately predicted, and quantitatively described. Taking the relative dynamic elastic modulus as the evaluation index, the response surface model and GM (1,1) model were used to study the frost resistance of HDFC, and the advantages and disadvantages were evaluated. Design-Expert software was used to establish a response surface model to study the effects of polyvinyl alcohol fiber (PVA) length, polyvinyl alcohol fiber volume content, and number of freeze-thaw cycles on the frost resistance of HDFC, and a fitting relationship model between the relative dynamic elastic modulus and these three factors was established. The results show that the influence of PVA fiber content on the frost resistance durability of HDFC is higher than that of the PVA fiber length, but the effect of the external environment on the degree of deterioration for HDFC is greater than the improvement of the properties of the material itself; that is, the freeze-thaw cycling has a greater effect than the PVA fiber content and length. Grey system theory was introduced in the HDFC freezing resistance test, and the change rule for the relative elastic modulus and the average relative error for the GM (1,1) model for varying PVA fiber length and content was determined to be less than 5%. It is concluded that the freezing resistance prediction accuracy for HDFC based on the GM (1,1) model is higher than that of the response surface model. The GM (1,1) model can be used to accurately predict the degree of damage caused by freezing and melting cycles for HDFC.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3