Study on the Response of Staggered Floor Isolated Structures in Mountainous Areas under Three-Dimensional Earthquakes

Author:

Cheng Shishan1ORCID,Yang Jie2,Liu Dewen1ORCID,Chen Lihao1,Wan Feng1,Yang Fan1,Liu Yang3

Affiliation:

1. College of Civil Engineering, Southwest Forestry University, Kunming 650000, China

2. College of Engineering and Technology, The Open University of Sichuan, Chengdu 610031, China

3. College of Civil Engineering, Tongji University, Shanghai 200092, China

Abstract

As coal mines are susceptible to safety accidents due to earthquakes, the requirements for structures in coal mining areas such as fire control centers and hospitals are higher, so base isolated structures, including staggered isolated structures, adapted to mountainous terrain are used in mining areas. The staggered floor isolated structure is a kind of isolated structure in mountainous areas which developed from the base-isolated structure. The theoretical research on staggered isolated structures is relatively few, and the theoretical research lags behind the practical application of engineering. In this paper, three staggered floor isolated structures with different heights of staggered floors are established. The responses of structures under one-dimensional, two-dimensional, and three-dimensional earthquakes are analyzed by the finite element dynamic time-history analysis method. The structural torsion, interstory shear force, maximum axial force, and floor displacement of the structure are compared. Due to the asymmetric characteristics of the staggered floor isolated structure, the center of stiffness of the staggered floor isolated structure deviates from the center of mass, which produces not only horizontal vibration but also obvious torsional vibration. The input of earthquakes in different dimensions also makes a difference in the response of the structure. The location between the upper isolated layer and the first floor above the upper isolated layer is a weak point of the structure. The results obtained in this study are distinguished from traditional basic isolated structures, which supplements the theoretical research of the staggered isolated structure.

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3