Hybrid Kinematic-Dynamic Approach to Seismic Wave-Equation Modeling, Imaging, and Tomography

Author:

Serdyukov Alexandr S.1,Duchkov Anton A.12

Affiliation:

1. Institute of Petroleum Geology and Geophysics SB RAS, Pr. Ac. Koptyuga 3, Novosibirsk 630090, Russia

2. Novosibirsk State University, Street Pirogova 2, Novosibirsk 630090, Russia

Abstract

Estimation of the structure response to seismic motion is an important part of structural analysis related to mitigation of seismic risk caused by earthquakes. Many methods of computing structure response require knowledge of mechanical properties of the ground which could be derived from near-surface seismic studies. In this paper we address computationally efficient implementation of the wave-equation tomography. This method allows inverting first-arrival seismic waveforms for updating seismic velocity model which can be further used for estimating mechanical properties. We present computationally efficient hybrid kinematic-dynamic method for finite-difference (FD) modeling of the first-arrival seismic waveforms. At every time step the FD computations are performed only in a moving narrowband following the first-arrival wavefront. In terms of computations we get two advantages from this approach: computation speedup and memory savings when storing computed first-arrival waveforms (it is not necessary to make calculations or store the complete numerical grid). Proposed approach appears to be specifically useful for constructing the so-called sensitivity kernels widely used for tomographic velocity update from seismic data. We then apply the proposed approach for efficient implementation of the wave-equation tomography of the first-arrival seismic waveforms.

Funder

Russian Foundation for Basic Research

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Method for Modeling Acoustic Waves in Moving Subdomains;Acoustics;2022-04-13

2. Locating harmonic microseismic sources using phases of signals and spectral transformations;IOP Conference Series: Earth and Environmental Science;2019-06-03

3. Cache-efficient parallel eikonal solver for multicore CPUs;Computational Geosciences;2018-01-29

4. Fast RTM for contrast velocity models based on modeling in a running strip;SEG Technical Program Expanded Abstracts 2017;2017-08-17

5. Seismic Theory Complete Session;SEG Technical Program Expanded Abstracts 2017;2017-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3