Affiliation:
1. Korea Aerospace Research Institute (KARI), Daejeon, Republic of Korea
2. Korea Environment Institute (KEI), Sejong, Republic of Korea
Abstract
The purpose of this study was to analyze geospatial information (GI) research trends using text-mining techniques. Data were collected from 869 papers found in the Korea Citation Index (KCI) database (DB). Keywords extracted from these papers were classified into 13 GI domains and 13 research domains. We conducted basic statistical analyses (e.g., frequency and time series analyses) and network analyses, using such measures as frequency, degree, closeness centrality, and betweenness centrality, on the resulting domains. We subdivided the most frequent GI domain for more detailed analysis. Such processes permit an analysis of the relationships between the Research Fields associated with each GI. Our time series analysis found that the Climate and Satellite Image domain frequencies continuously increased. Satellite Image, General-Purpose Map, and Natural Disaster Map in the GI domain and Climate and Natural Disaster in the Research Field domain appeared in the center of the GI-Research Field network. We subdivided the Satellite Image domain for detailed analysis. As a result, LANDSAT, KOMPSAT, and MODIS displayed high scores on the frequency, degree, closeness centrality, and betweenness centrality indices. These results will be useful in GI-based interdisciplinary research and the selection of new research themes.
Funder
Ministry of Land, Infrastructure and Transport
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献