Affiliation:
1. School of Electrical Engineering, Southeast University, Nanjing 210096, China
Abstract
The paper focuses on the design and nonlinear control of the humanoid wrist/shoulder joint based on the cable-driven parallel mechanism which can realize roll and pitch movement. In view of the existence of the flexible parts in the mechanism, it is necessary to solve the vibration control of the flexible wrist/shoulder joint. In this paper, a cable-driven parallel robot platform is developed for the experiment study of the humanoid wrist/shoulder joint. And the dynamic model of the mechanism is formulated by using the coupling theory of the flexible body’s large global motion and small flexible deformation. Based on derived dynamics, antivibration control of the joint robot is studied with a nonlinear control method. Finally, simulations and experiments were performed to validate the feasibility of the developed parallel robot prototype and the proposed control scheme.
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献