Effect of Friction Model and Tire Maneuvering on Tire-Pavement Contact Stress

Author:

Zhou Haichao1,Wang Guolin1,Ding Yangmin2,Yang Jian1,Liang Chen1,Fu Jing1

Affiliation:

1. School of Automotive and Traffic Engineering, Jiangsu University, Jiangsu 212013, China

2. School of Engineering, Rutgers-The State University of New Jersey, NJ 08854, USA

Abstract

This paper aims to simulate the effects of different friction models on tire braking. A truck radial tire (295/80R22.5) was modeled and the model was validated with tire deflection. An exponential decay friction model that considers the effect of sliding velocity on friction coefficients was adopted for analyzing braking performance. The result shows that the exponential decay friction model used for evaluating braking ability meets design requirements of antilock braking system (ABS). The tire-pavement contact stress characteristics at various driving conditions (static, free rolling, braking, camber, and cornering) were analyzed. It is found that the change of driving conditions has direct influence on tire-pavement contact stress distribution. The results provide the guidance for tire braking performance evaluation.

Funder

China National Funds for Young Scientists

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3