Affiliation:
1. School of Computer Science & Technology, Huazhong University of Science and Technology, Wuhan 430074, China
2. Center of Network and Computation, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract
With the rapid development of data-driven and bandwidth-intensive applications in the Software Defined Networking (SDN) northbound interface, big data stream is dynamically generated with high growth rates in SDN-based data center networks. However, a significant issue faced in big data stream communication is how to verify its authenticity in an untrusted environment. The big data stream traffic has the characteristics of security sensitivity, data size randomness, and latency sensitivity, putting high strain on the SDN-based communication system during larger spoofing events in it. In addition, the SDN controller may be overloaded under big data stream verification conditions on account of the fast increase of bandwidth-intensive applications and quick response requirements. To solve these problems, we propose a two-phase adaptive authenticated model (TAAM) by introducing source address validation implementation- (SAVI-) based IP source address verification. The model realizes real-time data stream address validation and dynamically reduces the redundant verification process. A traffic adaptive SAVI that utilizes a robust localization method followed by the Sequential Probability Ratio Test (SPRT) has been proposed to ensure differentiated executions of the big data stream packets forwarding and the spoofing packets discarding. The TAAM model could filter out the unmatched packets with better packet forwarding efficiency and fundamental security characteristics. The experimental results demonstrate that spoofing attacks under big data streams can be directly mitigated by it. Compared with the latest methods, TAAM can achieve desirable network performance in terms of transmission quality, security guarantee, and response time. It drops 97% of the spoofing attack packets while consuming only 9% of the controller CPU utilization on average.
Funder
National Key R&D Program of China
Subject
Computer Networks and Communications,Information Systems
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献