Multiobjective Optimization of Hard Turning on OHNS Steel Using Desirability and TOPSIS Approaches

Author:

Manikandan C.1ORCID,Rajeswari B.2ORCID,Mohan Dhanesh G.34ORCID,Aravind R. M.5

Affiliation:

1. Mechanical Engineering, CMS College of Engineering and Technology, Coimbatore 641032, Tamil Nadu, India

2. Mechanical Engineering, Government College of Engineering, Dharmapuri 636704, Tamil Nadu, India

3. School of Engineering, Faculty of Technology, University of Sunderland, Sunderland SR6 0DD, UK

4. Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Chandigarh, Punjab 140401, India

5. Computer Science and Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India

Abstract

Machining hard materials with 45–48 HRC is difficult in turning operation because of the improvident cutting parameter selections for the operation. The OHNS (AISI/SAE-01–48HRC) steel is mainly preferred for the production of shafts, gears, cams, and press tools. The OHNS material was turned at a dry state using VP-coated carbide inserts. The seventeen experimental trials were designed by central composite design (CCD) with different levels of cutting parameters, like feed rate, cutting speed, and depth of cut. Design Expert-11 software desirability approach and TOPSIS (Technique for Order Preference by Simulating the Ideal Solution) were used to analyse the experimental results to obtain a single optimal solution that defines better results on metal removal rate (MRR) and surface finish (Ra). RSM solution with 81.3% desirability, the cutting speed of 60 m/min, feed rate of 0.08 mm/rev, and depth of cut 1 mm as the optimal cutting parameters; similarly, TOPSIS algorithm calculation identifies the cutting parameter combinations, such as 40 m/min cutting speed, 0.09 mm/rev feed rate, and 1 mm depth cut to enrich the quality of the machined steel; however, the desirability approach cutting parameter setting is better for the surface finish achievement, while TOPSIS solution is better to obtain significant MRR. The confirmation test results validated for the predicted values of both approaches; as such, the experimental results were maintained better convenience than the predicted one. For the optimum cutting parameter combinations, an MRR of 22.032 gm/min and surface roughness of 0.781 μm were obtained at 60 m/min cutting speed, 0.08 mm/rev feed rate, and 1 mm depth of cut.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3