Application of the Variable Precision Rough Sets Model to Estimate the Outlier Probability of Each Element

Author:

Pérez Francisco Maciá1ORCID,Martienz Jose Vicente Berna1ORCID,Oliva Alberto Fernández2,Ortega Miguel Abreu3

Affiliation:

1. Computer Science & Technology Department, University of Alicante, Spain

2. Department of Computer Science, Faculty of Mathematics and Computer Science, University of Havana, Cuba

3. MSc Student at Georgia Institute of Technology, USA

Abstract

In a data mining process, outlier detection aims to use the high marginality of these elements to identify them by measuring their degree of deviation from representative patterns, thereby yielding relevant knowledge. Whereas rough sets (RS) theory has been applied to the field of knowledge discovery in databases (KDD) since its formulation in the 1980s; in recent years, outlier detection has been increasingly regarded as a KDD process with its own usefulness. The application of RS theory as a basis to characterise and detect outliers is a novel approach with great theoretical relevance and practical applicability. However, algorithms whose spatial and temporal complexity allows their application to realistic scenarios involving vast amounts of data and requiring very fast responses are difficult to develop. This study presents a theoretical framework based on a generalisation of RS theory, termed the variable precision rough sets model (VPRS), which allows the establishment of a stochastic approach to solving the problem of assessing whether a given element is an outlier within a specific universe of data. An algorithm derived from quasi-linearisation is developed based on this theoretical framework, thus enabling its application to large volumes of data. The experiments conducted demonstrate the feasibility of the proposed algorithm, whose usefulness is contextualised by comparison to different algorithms analysed in the literature.

Funder

Smart University

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3