Comparative Catalytic Evaluation of Nano-ZrOx Promoted Manganese Catalysts: Kinetic Study and the Effect of Dopant on the Aerobic Oxidation of Secondary Alcohols

Author:

Assal Mohamed E.1,Kuniyil Mufsir12,Khan Mujeeb1,Shaik Mohammed Rafi1ORCID,Al-Warthan Abdulrahman1,Siddiqui Mohammed Rafiq H.1ORCID,Labis Joselito P.3ORCID,Adil Syed Farooq1ORCID

Affiliation:

1. Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

2. Department of Chemistry, K L University, Guntur, Andhra Pradesh 522502, India

3. King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

This work reports the zirconia (ZrOx) nanoparticles doped MnCO3 catalysts prepared by facile and simple coprecipitation technique and the synthesis of zirconia-manganese carbonate [X% ZrOx–MnCO3] (where X% = 0–7%) catalyst which upon calcination at 400°C is converted to zirconia-manganese dioxide [1% ZrOx–MnO2] and when calcined at 500°C is converted to zirconia-manganic trioxide [1% ZrOx–Mn2O3]. A comparative catalytic study was performed to investigate the catalytic efficiency between carbonate and oxides for the selective oxidation of 1-phenylethanol by using molecular O2 as a clean oxidant. The influence of several parameters such as w/w% of ZrOx, reaction time, calcination temperature, catalyst amount, and reaction temperature has been thoroughly examined using oxidation of 1-phenylethanol as a model substrate. The 1% ZrOx–MnCO3 precalcined at 300°C exhibited the best catalytic efficiency. It was found that ZrOx nanoparticles also play an essential role in enhancing the effectiveness of the catalytic system for the aerobic oxidation of alcohols. Furthermore, the physical and chemical properties of synthesized catalysts were evaluated by microscopic and spectroscopic techniques. An extremely high specific activity of 40 mmol·g−1·h−1 with a 100% conversion of oxidation product and selectivity of >99% was achieved within extremely short reaction time (6 min).

Funder

King Saud University

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3