lncRNA PDCD4-AS1 Promotes the Progression of Glioma by Regulating miR-30b-3p/METTL7B Signaling

Author:

Li Zuowei12ORCID,Song Yelin3ORCID,Zhang Jimei14ORCID

Affiliation:

1. Shandong University of Traditional Chinese Medicine, Jinan 250011, China

2. Department of Encephalopathy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China

3. Department of Cardiovascular Medicine, Qingdao Hospital of Traditional Chinese Medicine, Qingdao 266011, China

4. The 960th Hospital of the PLA Joint Logistics Support Force (Tai’an), Tai’an 271099, China

Abstract

Background. Gliomas are the most common and most malignant primary tumors of the adult central nervous system, but their etiology and pathogenesis remain unclear. This study was aimed at investigating the expression and function of lncRNA PDCD4-AS1 in glioma and elucidating the mechanism by which PDCD4-AS1 regulates the biological features of glioma. Method. The expression of PDCD4-AS1 was determined by bioinformatic analysis and qRT-PCR assay. PDCD4-AS1 was knocked down in glioma cells using siRNA transfection. The functional analysis of cells was conducted using CCK-8 proliferation, cell migration, and invasion assays, as well as cell cycle analysis. An in vivo tumorigenesis assay was performed to investigate the role of PDCD4-AS1 knockdown in glioma tumor growth. We performed bioinformatic analysis, RNA pull-down, and luciferase reporter assays to investigate the downstream targets of PDCD4-AS1. A rescue experiment was then performed to confirm the regulating mechanism. Results. PDCD4-AS1 was found to be significantly upregulated in glioma patients’ tumor tissues and cell lines. The silencing of PDCD4-AS1 inhibited glioma cell proliferation, invasion, migration, and induced cell cycle arrest. In vivo experiments showed that silencing PDCD4-AS1 inhibited glioma tumor growth. An investigation of the underlying mechanism suggested that PDCD4-AS1 positively regulated METTL7B expression by sponging miR-30b-3. Both the knockdown of miR-30b-3p and the overexpression of METTL7B could, respectively, reverse the malignant phenotype of cells affected by silencing PDCD4-AS1. Conclusion. These results demonstrate that PDCD4-AS1 exerted an oncogenic role by regulating the miR-30b-3p/METTL7B axis.

Funder

Special Education Fund of Shandong Province

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3