Thermal Bending of the Rotor Due to Rotor-to-Stator Rub

Author:

Goldman Paul1,Muszynska Agnes1,Bently Donald E.1

Affiliation:

1. Bently Rotor Dynamics Research Corporation, 1711 Orbit Way, Bldg. 1, Minden, NV 89423, USA

Abstract

The rotor thermal bending due to the rotor-to-stator rubbing can lead to one of three types of observed rotor lateral motion: (1) spiral with increasing amplitude, (2) oscillating between rub]no-rub conditions, and (3) asymptotical approach to the rotor limit cycle. Based on the machinery observations, it is assumed in the analytical part of the paper that the speed scale of transient thermal effects is considerably lower than that of rotor vibrations, and that the thermal effect reflects only on the rotor steady-state vibrational response. This response would change due to thermally induced bow of the rotor, which can be considered to slowly vary in timefor the purpose of rotor vibration calculations. Thus uncoupled from the thermal problem, the rotor vibration is analyzed. The major consideration is given to the rotor which experiences intermittent contact with the stator, due to predetermined thermal bow, unbalance force, and radial constant load force. In the case of inelastic impact, it causes an on/off, step-change in the stiffness of the system. Using a specially developed variable transformation for the system with discontinuities, and averaging technique the resonance regimes of motion are obtained. These regimes are used to calculate the heat generated during contact stage, as a function of thermal bow modal parameters, which is used as a boundary condition for the rotor heat transfer problem. The latter is treated as quasi-static, which reduces the problem to an ordinary differential equation for the thermal bow vector. It is investigated from the stability standpoint.

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3