Viscous Flow and Dynamic Stall Effects on Vertical-Axis Wind Turbines

Author:

Allet A.1,Paraschivoiu I.1

Affiliation:

1. Department of Mechanical Engineering, École Polytechnique de Montréal, C.P. 6079, Succ. Centre Ville, Montréal, Québec H3C 3A7, Canada

Abstract

The present paper describes a numerical method, aimed to simulate the flow field of vertical-axis wind turbines, based on the solution of the steady, incompressible, laminar Navier-Stokes equations in cylindrical coordinates. The flow equations, written in conservation law form, are discretized using a control volume approach on a staggered grid. The effect of the spinning blades is simulated by distributing a time-averaged source terms in the ring of control volumes that lie in the path of turbine blades. The numerical procedure used here, based on the control volume approach, is the widely known “SIMPLER” algorithm. The resulting algebraic equations are solved by the TriDiagonal Matrix Algorithm (TDMA) in the r- and z-directions and the Cyclic TDMA in the 0-direction. The indicial model is used to simulate the effect of dynamic stall at low tip-speed ratio values. The viscous model, developed here, is used to predict aerodynamic loads and performance for the Sandia 17-m wind turbine. Predictions of the viscous model are compared with both experimental data and results from the CARDAAV aerodynamic code based on the Double-Multiple Streamtube Model. According to the experimental results, the analysis of local and global performance predictions by the 3D viscous model including dynamic stall effects shows a good improvement with respect to previous 2D models.

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3