Position Control of Magnetic Levitation Ball Based on an Improved Adagrad Algorithm and Deep Neural Network Feedforward Compensation Control

Author:

Wei Zhouxiang1,Huang Zhiwen1,Zhu Jianmin1ORCID

Affiliation:

1. College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Abstract

To control the position of the magnetic levitation ball more accurately, this paper proposes a deep neural network feedforward compensation controller based on an improved Adagrad optimization algorithm. The control structure of the controller consists of a deep neural network identifier, a deep neural network feedforward compensator, and a PID controller. First, the dynamic inverse model of the magnetic levitation ball is established by the deep neural network identifier which is trained online based on the improved Adagrad algorithm, and the trained network parameters are dynamically copied to the deep neural network feedforward compensator. Then, the position control of the magnetic levitation ball system is realized by the output of the feedforward compensator and the PID controller. Simulations and experiments illustrate that the accuracy of the deep network feedforward compensation control based on an improved Adagrad algorithm is higher, and its control system shows good dynamic and static performance and robustness to some extent.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3