Abstract
Retrotransposons like L1 are silenced in somatic cells by a variety of mechanisms acting at different levels. Protective mechanisms include DNA methylation and packaging into inactive chromatin to suppress transcription and prevent recombination, potentially supported by cytidine deaminase editing of RNA. Furthermore, DNA strand breaks arising during attempted retrotranspositions ought to activate cellular checkpoints, and L1 activation outside immunoprivileged sites may elicit immune responses. A number of observations indicate that L1 sequences nevertheless become reactivated in human cancer. Prominently, methylation of L1 sequences is diminished in many cancer types and full-length L1 RNAs become detectable, although strong expression is restricted to germ cell cancers. L1 elements have been found to be enriched at sites of illegitimate recombination in many cancers. In theory, lack of L1 repression in cancer might cause transcriptional deregulation, insertional mutations, DNA breaks, and an increased frequency of recombinations, contributing to genome disorganization, expression changes, and chromosomal instability. There is however little evidence that such effects occur at a gross scale in human cancers. Rather, as a rule, L1 repression is only partly alleviated. Unfortunately, many techniques commonly used to investigate genetic and epigenetic alterations in cancer cells are not well suited to detect subtle effects elicited by partial reactivation of retroelements like L1 which are present as abundant, but heterogeneous copies. Therefore, effects of L1 sequences exerted on the local chromatin structure, on the transcriptional regulation of individual genes, and on chromosome fragility need to be more closely investigated in normal and cancer cells.
Subject
Health, Toxicology and Mutagenesis,Genetics,Molecular Biology,Molecular Medicine,General Medicine,Biotechnology
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献