Effects of IgM Allotype Suppression on Serum IgM Levels, B-1 and B-2 Cells, and Antibody Responses ir Allotype Heterozygous F1 Mice

Author:

Hamilton Ann Marie1,Kearney John F.12

Affiliation:

1. Division of Developmental and Clinical Immunology, Department of Microbiology, University of Alabama, Birmingham, Alabama 35294, USA

2. 378 Wallace Tumor Institute, University of Alabama, Alabama 35294, USA

Abstract

IgM allotype heterozygous F1 mice were independently suppressed for Igh6a or Igh6b to evaluate the contribution of B-1 and B-2 cells to natural serum IgM levels and Ab responses. B-2 B cells expressing IgM of the suppressed allotype were evident in the spleens of suppressed mice 4 to 6 weeks after cessation of the suppression regimen, whereas B-1 B cells of the suppressed allotype were undetectable for up to 9 months. Although serum IgM of the suppressed allotype was initially depleted in mice suppressed for either allotype, by 7 months of age, there were detectable levels of IgM of the suppressed allotype in the serum; however, the levels were significantly below that found in nonsuppressed mice. When mice were immunized with either the T-independent or T-dependent form of phosphorylcholine, those suppressed for either allotype, and consequently depleted of B-1 B cells of that allotype, did not respond with phosphorylcholine-specific IgM of the suppressed allotype. In contrast, when mice were immunized with α1-3 dextran, the Igh6a allotype-suppressed mice were able to produce dextran-specific IgM of that allotype. These results show that allotype-bearing B-1 cells of both allotypes can be effectively suppressed by this suppression protocol and this produces long-lasting effects on B-1 cell levels and serum IgM of the suppressed allotype. These observations reflect the derivation of the majority of B-1 cells from fetal-neonatal precursors, which cannot be replaced by newly emerging B-2 cells of adult origin. Their ablation by antibody treatment results in permanent alterations to the adult B-cell repertoire.

Funder

National Institutes of Health

Publisher

Hindawi Limited

Subject

Developmental Biology,Immunology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3