Vibration Fracture Mechanism and Optimization Design of Array Power Supply for Near-Space SAR

Author:

Wang Changrui1ORCID,Tang Lina2ORCID,Wang Henghai3ORCID

Affiliation:

1. National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Shanghai Aerospace Equipments Manufacturer Co., Ltd., Shanghai 200245, China

3. The 14th Research Institute of China Electronics Technology Group Corporation, Nanjing 210039, China

Abstract

The random vibration failure of an array power supply for near-space SAR was analyzed. The fracture mechanism and the fracture reason of fracture formation in the specimen were investigated. The results show that antishock MOS pin breaks first, and the power supply is still in the working state during the process of random vibration. This caused dischargings at the tip of the fracture and melting of the tip of the broken pin which form a river-shaped fracture and granular tissue. The plastic fracture with typical dimple morphology of the pins for the resistor tube occurred during the random vibration. The intergranular fracture appeared at the welding part of the electronic components for array power supply, which presented a brittle fracture mechanism. The fracture was dominated by a ductile fracture for components when the stress produced by the vibration was close to the yield strength of the material. The fracture was dominated by a brittle fracture for components when the stress produced by the vibration was far beyond the yield strength of the material. A simulation evaluation system based on the high-confidence model was proposed. The stress of the electronic components for array power supply and its welding was much lower than the allowable strength of the material by the optimization of the structure and the form of the welding for the array power supply. The sample was successfully tested and verified without any further fracture problems.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3