An Empirical Study on the Performance of Cost-Sensitive Boosting Algorithms with Different Levels of Class Imbalance

Author:

Yin Qing-Yan1,Zhang Jiang-She1,Zhang Chun-Xia1,Liu Sheng-Cai1

Affiliation:

1. School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China

Abstract

Cost-sensitive boosting algorithms have proven successful for solving the difficult class imbalance problems. However, the influence of misclassification costs and imbalance level on the algorithm performance is still not clear. The present paper aims to conduct an empirical comparison of six representative cost-sensitive boosting algorithms, including AdaCost, CSB1, CSB2, AdaC1, AdaC2, and AdaC3. These algorithms are thoroughly evaluated by a comprehensive suite of experiments, in which nearly fifty thousands classification models are trained on 17 real-world imbalanced data sets. Experimental results show that AdaC serial algorithms generally outperform AdaCost and CSB when dealing with different imbalance level data sets. Furthermore, the optimality of AdaC2 algorithm stands out around the misclassification costs setting:CN=0.7,CP=1, especially for dealing with strongly imbalanced data sets. In the case of data sets with a low-level imbalance, there is no significant difference between the AdaC serial algorithms. In addition, the results indicate that AdaC1 is comparatively insensitive to the misclassification costs, which is consistent with the finding of the preceding research work.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3