Magnetic Resonance Image under Variable Model Algorithm in Diagnosis of Patients with Spinal Metastatic Tumors

Author:

Chen Hongliang1ORCID,Xie Biao2ORCID,Zhong Xin3ORCID,Ma Xiang2ORCID

Affiliation:

1. Department of Orthopaedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China

2. Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650000, China

3. Department of Dermatology, Xuzhou Central Hospital, Xuzhou 221000, China

Abstract

The aim of this study was to explore the adoption of the variable model algorithm in magnetic resonance imaging (MRI) image analysis and evaluate the effect of the algorithm-based MRI in the diagnosis of spinal metastatic tumor diseases. 100 patients with spinal metastatic tumors who were treated in hospital were recruited as the research objects. All patients were randomly divided into the experimental group (MRI image analysis based on variable model) and the control group (conventional MRI image diagnosis), and the MRI of the experimental group was segmented using the conventional algorithm with variable model and the improved algorithm with GVF force field. The accuracy index (Dice coefficient D) values were used to evaluate the vertebral segmentation effect of the improved variable model algorithm with the introduction of GVF force field, and the recognition rate, sensitivity, and specificity indexes were used to evaluate the effects of the two algorithms on the recognition of MRI image features of spinal metastatic tumors. The results showed that the mean D value of the variable model improvement algorithm for the segmentation of five vertebrae of spinal metastatic tumors was significantly improved relative to the conventional variable model algorithm, and the difference was statistically significant ( P < 0.05 ). At the number of 80 iterations, the recognition rate, sensitivity, and specificity of MRI image segmentation of the traditional variable model algorithm processing group were 89.32%, 74.88%, and 86.27%, respectively, while the recognition rate, sensitivity, and specificity of MRI image segmentation of the variable model improvement algorithm processing group were 97.89%, 96.75%, and 96.45%, respectively. The results of the latter were significantly better than those of the former, and the differences were statistically significant ( P < 0.05 ); and the comparison of MRI images showed that the variable model improvement algorithm was more rapid and accurate in identifying the focal sites of patients with spinal metastases. The accuracy of MRI images based on the variable model algorithm increased from 69.5% to 92%, and the difference was statistically significant ( P < 0.05 ). In short, MRI image analysis based on the variable model algorithm had great adoption potential in the clinical diagnosis of spinal metastatic tumors and was worthy of clinical promotion.

Funder

China’s 62nd Postdoctoral Fund

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3