Research on Students’ Mental Health Based on Data Mining Algorithms

Author:

Luo Mengjun1ORCID

Affiliation:

1. College of Preschool Education and Humanities, Dongguan Vocational and Technical College, Dongguan, Guangdong 523808, China

Abstract

With the diversification and rapid development of society, people’s living conditions, learning and friendship conditions, and employment conditions are facing increasing pressure, which greatly challenges people’s psychological endurance. Therefore, strengthening the mental health education of students has become an urgent need of society and a hot issue of common concern. In order to solve the problems of high misjudgment rate and low work efficiency in the current mental health intelligence evaluation process, a mental health intelligence evaluation system based on a joint optimization algorithm is proposed. The joint optimization algorithm consists of an improved decision tree algorithm and an improved ANN algorithm. First, analyze the current research status of mental health intelligence evaluation, and construct the framework of mental health intelligence evaluation system; then collect mental health intelligence evaluation data based on data mining, use joint learning algorithm to analyze and classify mental health intelligence evaluation data, and obtain mental health intelligence evaluation results. Finally, through specific simulation experiments, the feasibility and superiority of the mental health intelligent evaluation system are analyzed. The results show that the system in the article overcomes the shortcomings of the existing mental health intelligence evaluation system, improves the accuracy of mental health intelligence evaluation, and improves the efficiency of mental health intelligence evaluation. It has good system stability and can meet the actual current situation, which are requirements for mental health intelligence evaluation.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multi-Model Ensemble Approach for Proactive Student Mental Health Assessment;2024 IEEE International Conference for Women in Innovation, Technology & Entrepreneurship (ICWITE);2024-02-16

2. Research on College Students’ Behavioral Patterns Based on Big Data;Communications in Computer and Information Science;2024

3. Improving the Avoidant Personality Disorder Prediction for Higher Education Using SMOTE-ENN and Multi-Layer Perceptron Neural Network;TEM Journal;2023-05-29

4. Intelligent Evaluation Algorithm of Undergraduate College English Mobile Learning Efficiency Based on Big Data;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2023

5. Mental Health Prediction Among Students Using Machine Learning Techniques;Evolution in Computational Intelligence;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3