Quercetin Improves Mitochondrial Function and Inflammation in H2O2-Induced Oxidative Stress Damage in the Gastric Mucosal Epithelial Cell by Regulating the PI3K/AKT Signaling Pathway

Author:

Yao Xueting1,Mei Yingbing2ORCID,Mao Wanyu3

Affiliation:

1. Department of Traditional Chinese Medicine, Wuhan Third Hospital, Wuhan, China

2. Department of Geriatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei, China

3. 2019 Master’s Degree Candidate, Hubei University of Chinese Medicine, Hubei, China

Abstract

Functional dyspepsia (FD) is one of the most common functional gastrointestinal disorders, the therapeutic strategy of which it is limited due to its complex pathogenesis. Oxidative stress-induced damage in gastric mucosal epithelial cells is related to the pathogenesis and development of FD. Quercetin (Que) is one of the active ingredients of Zhishi that showed antioxidant, antiapoptotic, and anti-inflammatory effects. The aim of this study is to investigate the effect of Que on oxidative stress-induced gastric mucosal epithelial cells damage and its underlying molecular mechanism. The gastric mucosal epithelial cell line GES-1 was treated with 200 μM of H2O2 to construct an oxidative stress-induced damage model. The H2O2 cells were then administrated with different concentrations of Que. The results indicated that high concentration of Que (100 μM) showed cytotoxicity in H2O2-induced GES-1 cells. However, appropriate concentration of Que (25 and 50 μM) alleviated the oxidative stress damage induced by H2O2, as demonstrated by the increase of proliferation, decrease of ROS generation, apoptosis, inflammation, and alleviation of mitochondrial function and cell barrier. In addition, Que increased the activation of phosphorylation of PI3K and AKT decreased by H2O2. To investigate whether Que alleviated the oxidative stress damage in GES-1 cells by the PI3K/AKT signaling pathway, the GES-1 cells were treated with Que (25 μM) combined with and without LY294002, the PI3K inhibitor. The results showed that LY294002 suppressed the alleviation effect on Que in H2O2-induced GES-1 cells. In conclusion, the current study demonstrates that Que alleviates oxidative stress damage in GES-1 cells by improving mitochondrial function and mucosal barrier and suppressing inflammation through regulating the PI3K/AKT signaling pathway, indicating the potential therapeutic effects of Que on FD.

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Reference53 articles.

1. Functional dyspepsia;P. Enck;Nat Rev Dis Primers,2017

2. Clinical and epidemiological differences in functional dyspepsia between the East and the West;S. Mahadeva;Neuro-Gastroenterology and Motility,2017

3. Mitochondria and cell death: a pore way to die?;A. P. Halestrap;Symp Soc Exp Biol,2000

4. Hexavalent chromium induced heart dysfunction via Sesn2-mediated impairment of mitochondrial function and energy supply

5. Harmful effects of inorganic mercury exposure on kidney cells: mitochondrial dynamics disorder and excessive oxidative stress;B. Han;Biological Trace Element Research,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3