Statistical Constitutive Model of Thermal Damage for Deep Rock considering Initial Compaction Stage and Residual Strength

Author:

Zhu Lingjie12,Xu Xiaoli13ORCID,Cao Xiaojian1,Chen Shaoyong1ORCID

Affiliation:

1. School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China

2. School of Science, Nantong University, Nantong 226019, China

3. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221008, China

Abstract

From the theory of damage mechanics, based on the Hoek-Brown strength criterion and Weibull distribution law of rock microelement strength, a statistical constitutive model of rock thermal damage is established by using equivalent strain hypothesis, and the theoretical model is modified by considering the compression coefficient and residual strength correction coefficient. The rationality of the modified model is verified by experimental data. The results show that the stress-strain curves of rock can be divided into four stages: initial compaction, stable damage propagation, damage strengthening expansion, and damage failure according to the characteristics of rock damage evolution. The peak stress of rock increases exponentially with the increase of confining pressure, and the maximum damage evolution rate decreases exponentially with the increase of confining pressure, which indicates that confining pressure delays the development of cumulative damage. The peak stress and maximum damage evolution rate of rock decrease exponentially with the increase of temperature, which accelerates the damage of rock. The initial damage of rock is thermal damage caused by temperature, and the damage value increases with the increase of temperature. The revised theoretical curve reflects the characteristics of rock compaction stage and residual strength and improves the coincidence with the experimental curve. The research results provide a reference for the establishment of thermal damage constitutive model of rock in deep engineering.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3