Performance Augmentation of Base Classifiers Using Adaptive Boosting Framework for Medical Datasets

Author:

Nayab Durr e1ORCID,Khan Rehan Ullah2ORCID,Qamar Ali Mustafa3ORCID

Affiliation:

1. Department of Computer Systems Engineering, University of Engineering and Technology, Peshawar 25120, Pakistan

2. Department of Information Technology, College of Computer, Qassim University, Buraydah, Saudi Arabia

3. Department of Computer Science, College of Computer, Qassim University, Buraydah, Saudi Arabia

Abstract

This paper investigates the performance enhancement of base classifiers within the AdaBoost framework applied to medical datasets. Adaptive boosting (AdaBoost), being an instance of boosting, combines other classifiers to enhance their performance. We conducted a comprehensive experiment to assess the efficacy of twelve base classifiers with the AdaBoost framework, namely, Bayes network, decision stump, ZeroR, decision tree, Naïve Bayes, J-48, voted perceptron, random forest, bagging, random tree, stacking, and AdaBoost itself. The experiments are carried out on five datasets from the medical domain based on various types of cancers, i.e., global cancer map (GCM), lymphoma-I, lymphoma-II, leukaemia, and embryonal tumours. The evaluation focuses on the accuracy, precision, and efficiency of the base classifiers in the AdaBoost framework. The results show that the performance of Naïve Bayes, Bayes network, and voted perceptron is highly improved compared to the rest of the base classifiers, attaining accuracies as high as 94.74%, 97.78%, and 97.78%, respectively. The results also show that in most cases, the base classifiers perform better with AdaBoost compared to their performance, i.e., for voted perceptron, the accuracy is improved up to 13.34%.For bagging, it is improved by up to 7%. This research aims to identify such base classifiers with optimal boosting capabilities within the AdaBoost framework for medical datasets. The significance of these results is that they provide insight into the performance of the base classifiers when used in the boosting framework to enhance the classification performance of classifiers in scenarios where individual classifiers do not perform up to the mark.

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Civil and Structural Engineering,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental study and comparison of medical methodology and machine learning models to enhance algorithms for morphological classification of clinical and hematologic syndromes;2024 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA);2024-05-23

2. Development and evaluation of models for differential diagnosis of clinical and hematologic syndromes based on ensemble machine learning methods;2024 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA);2024-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3