Properties of Carbonated Steel Slag Admixture in the Cementitious System

Author:

Sun Lie1,Wang Hui2,Wang Yali1ORCID

Affiliation:

1. Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China

2. State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Science Research, Beijing, China

Abstract

Global warming caused by carbon dioxide (CO2) emissions has emerged as an undeniable environmental concern. While advocating for energy conservation and emissions reduction, the challenge of addressing the substantial CO2 emissions cannot be underestimated. Currently, steel slag is utilized in carbon capture and storage technology due to its potential for carbonation. However, the carbonation of steel slag necessitates a stable and cost-effective carbon source. Industrial exhaust gases are considered a viable option, but they often have low CO2 concentrations, resulting in sluggish carbonation rates. Therefore, this study focuses on directly converting steel slag powder into concrete mineral admixtures to enhance the carbonation rate at low CO2 concentrations. Experimental results reveal that a carbonation time of 3–7 days, a liquid–solid ratio of 50%, and the selection of sodium silicate as the alkali activator yield the optimal carbonation conditions. Under these conditions, the CO2 uptake can reach 15.3%–16.0%, and the f-CaO content can be reduced to 0.2%–0.3%. Mixing 30% carbonated steel slag powder with P·Ⅰ 42.5 cement in mortar samples yields a compressive strength of 32.1 MPa at 7 days and 47.5 MPa at 28 days, along with a flexural strength of 6.2 MPa at 7 days and 8.0 MPa at 28 days. The addition of carbonated steel slag powder not only enhances the mechanical properties but also reduces the pore diameter in the hardened cementitious system. In 7 days, the pore size decreases from being concentrated around 349 nm to approximately 282 nm, and in 28 days, the pore size decreases from being concentrated around 62 nm to roughly 55 nm. This transformation is primarily attributed to the role played by calcite grains in the carbonated steel slag powder, which facilitates nucleation and filling effects.

Funder

Beijing Science and Technology Planning Project

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference34 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3