Decolorisation of Reactive Red 120 Dye by Using Single-Walled Carbon Nanotubes in Aqueous Solutions

Author:

Bazrafshan Edris1,Mostafapour Ferdos Kord1,Hosseini Ali Reza1,Raksh Khorshid Ataolah1,Mahvi Amir Hossein234

Affiliation:

1. Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran

2. School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

3. Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran

4. National Institute of Health Research, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Dyes are one of the most hazardous chemical compound classes found in industrial effluents and need to be treated since their presence in water bodies reduces light penetration, precluding the photosynthesis of aqueous flora. In the present study, single-walled carbon nanotubes (SWCNTs) was used as an adsorbent for the successful removal of Reactive Red 120 (RR-120) textile dye from aqueous solutions. The effect of various operating parameters such as initial concentration of dye, contact time, adsorbent dosage and initial pH was investigated in order to find the optimum adsorption conditions. Equilibrium isotherms were used to identify the possible mechanism of the adsorption process. The optimum pH for removing of RR-120 dye from aqueous solutions was found to be 5 and for this condition maximum predicted adsorption capacity for RR-120 dye was obtained as 426.49 mg/g. Also, the equilibrium data were also fitted to the Langmuir, Freundlich and BET equilibrium isotherm models. It was found that the data fitted to BET (R2=0.9897) better than Langmuir (R2=0.9190) and Freundlich (R2=0.8819) model. Finally it was concluded that the single-walled carbon nanotubes can be used for dye removal from aqueous solutions.

Funder

Zahedan University

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3