A Multi-Attention Feature Distillation Neural Network for Lightweight Single Image Super-Resolution

Author:

Zhang Yongfei12ORCID,Lin Xinying13ORCID,Yang Hong1ORCID,He Jie4ORCID,Qing Linbo1ORCID,He Xiaohai1ORCID,Li Yi5ORCID,Chen Honggang16ORCID

Affiliation:

1. College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China

2. Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin 541004, China

3. Key Laboratory of Computer Vision and System, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China

4. Guangxi Key Laboratory of Machine Vision and Intelligent Control, Wuzhou University, Wuzhou 543002, China

5. D.I. Sinma (Sichuan) Machinery Co., Ltd., Suining 629201, China

6. Yunnan Key Laboratory of Software Engineering, Yunnan University, Kunming 650600, China

Abstract

In recent years, remarkable performance improvements have been produced by deep convolutional neural networks (CNN) for single image super-resolution (SISR). Nevertheless, a high proportion of CNN-based SISR models are with quite a few network parameters and high computational complexity for deep or wide architectures. How to more fully utilize deep features to make a balance between model complexity and reconstruction performance is one of the main challenges in this field. To address this problem, on the basis of the well-known information multi-distillation model, a multi-attention feature distillation network termed as MAFDN is developed for lightweight and accurate SISR. Specifically, an effective multi-attention feature distillation block (MAFDB) is designed and used as the basic feature extraction unit in MAFDN. With the help of multi-attention layers including pixel attention, spatial attention, and channel attention, MAFDB uses multiple information distillation branches to learn more discriminative and representative features. Furthermore, MAFDB introduces the depthwise over-parameterized convolutional layer (DO-Conv)-based residual block (OPCRB) to enhance its ability without incurring any parameter and computation increase in the inference stage. The results on commonly used datasets demonstrate that our MAFDN outperforms existing representative lightweight SISR models when taking both reconstruction performance and model complexity into consideration. For example, for ×4 SR on Set5, MAFDN (597K/33.79G) obtains 0.21 dB/0.0037 and 0.10 dB/0.0015 PSNR/SSIM gains over the attention-based SR model AFAN (692K/50.90G) and the feature distillation-based SR model DDistill-SR (675K/32.83G), respectively.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3