Agent-Oriented Software Engineering Methodologies: Analysis and Future Directions

Author:

Abdalla Reem1ORCID,Mishra Alok2ORCID

Affiliation:

1. Benghazi University—Faculty of Education, Benghazi, Libya

2. Informatics and Digitalization Group, Molde University College—Specialized University in Logistics, Molde, Norway

Abstract

The Internet of Things (IoT) facilitates in building cyber-physical systems, which are significant for Industry 4.0. Agent-based computing represents effective modeling, programming, and simulation paradigm to develop IoT systems. Agent concepts, techniques, methods, and tools are being used in evolving IoT systems. Over the last years, in particular, there has been an increasing number of agent approaches proposed along with an ever-growing interest in their various implementations. Yet a comprehensive and full-fledged agent approach for developing related projects is still lacking despite the presence of agent-oriented software engineering (AOSE) methodologies. One of the moves towards compensating for this issue is to compile various available methodologies, ones that are comparable to the evolution of the unified modeling language (UML) in the domain of object-oriented analysis and design. These have become de facto standards in software development. In line with this objective, the present research attempts to comprehend the relationship among seven main AOSE methodologies. More specifically, we intend to assess and compare these seven approaches by conducting a feature analysis through examining the advantages and limitations of each competing process, structural analysis, and a case study evaluation method. This effort is made to address the significant characteristics of AOSE approaches. The main objective of this study is to conduct a comprehensive analysis of selected AOSE methodologies and provide a proposal of a draft unified approach that drives strengths (best) of these methodologies towards advancement in this area.

Funder

Molde University College—Specialized University in Logistics, Norway

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference73 articles.

1. ADELFE 3.0 Design, Building Adaptive Multi Agent Systems Based on Simulation a Case Study

2. Aose methodologies and comparison of object oriented and agent-oriented software testing;R. Padmanaban

3. Developing Flexible Software Using Agent-Oriented Software Engineering

4. Spatiotemporal Modeling of the Smart City Residents’ Activity with Multi-Agent Systems

5. How to think about AI and machine learning technologies, and their roles in automation: an overview and framework, including tools that can be used to enable automation;B. Lorica,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3