MicroRNA-139-5p Alleviates High Glucose-Triggered Human Retinal Pigment Epithelial Cell Injury by Targeting LIM-Only Factor 4

Author:

Shao Kan1,Chen Gong2,Xia Lili1,Chen Cheng2ORCID,Huang Shan1ORCID

Affiliation:

1. Department of Endocrinology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

2. School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai, China

Abstract

Diabetic retinopathy (DR) is a type of diabetes complication, which can result in loss of vision in adults worldwide. Increasing evidence has revealed that microRNAs (miRs) can regulate DR progression. Thus, the present study was aimed at assessing the possible mechanism of miR-139-5p in high glucose- (HG-) incubated retinal pigment epithelial (ARPE-19) cells. The present results demonstrated that miR-139-5p expression was notably reduced in the serum samples of patients with DR, as well as in ARPE-19 cells treated with HG in a time-dependent manner. Moreover, miR-139-5p was markedly overexpressed by transfection of miR-139-5p mimics into ARPE-19 cells. Overexpression of miR-139-5p markedly induced cell viability and repressed HG-triggered apoptosis. Furthermore, overexpression of miR-139-5p relived HG-enhanced oxidative stress injury. It was found that HG induced malondialdehyde levels but decreased superoxide dismutase and glutathione peroxidase activities in ARPE-19 cells. In addition, overexpression of miR-139-5p could markedly decrease intracellular stress. The results demonstrated that overexpression of miR-139-5p effectively repressed HG-activated inflammation, as indicated by the upregulation of inflammation cytokines, including TNF-α, IL-6, and Cox-2, in ARPE-19 cells. Subsequently, it was identified that LIM-only factor 4 (LMO4) could act as a downstream target for miR-139-5p. LMO4 expression was significantly increased in patients with DR and HG-treated ARPE-19 cells. Mechanistically, knockdown of LMO4 reversed the biological role of miR-139-5p in proliferation, apoptosis, oxidative stress, and release of inflammation factors in vitro. Collectively, these results suggested that miR-139-5p significantly decreased ARPE-19 cell injury caused by HG by inducing proliferation and suppressing cell apoptosis, oxidant stress, and inflammation by modulating LMO4.

Funder

Key Project Funding of Science and Technology Committee of Changning, Shanghai

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3