Affiliation:
1. School of Information Science, Changjiang Polytechnic, Wuhan, Hubei 430074, China
2. School of Computer Science, Changjiang University, Jingzhou, Hubei 434023, China
Abstract
With the rapid development of the Internet in recent years, people are using the Internet less and less frequently. People publish and obtain information through various channels on the Internet, and online social networks have become one of the most important channels. Many nodes in social networks and frequent interactions between nodes create great difficulties for privacy protection, and some of the existing studies also have problems such as cumbersome computational steps and low efficiency. In this paper, we take the complex environment of social networks as the research background and focus on the key issues of mobile wireless sensor network reliability from the mobile wireless sensor networks that apply to large-scale, simpler information, and delay tolerance. By introducing intelligent learning methods and swarm intelligence bionic optimization algorithms, we address reliability issues such as mobile wireless sensor network fault prediction methods and topology reliability assessment methods in industrial application environments, the impact of mobile path optimization of mobile wireless sensor networks on data collection efficiency and network reliability, reliable data transmission based on data fusion methods, and intelligent fault tolerance strategies for multipath routing to ensure mobile wireless sensor networks operate energy-efficiently and reliably in complex industrial application environments.
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献