Affiliation:
1. School of Physics and Electronic Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, China
Abstract
Compared with the traditional object detection algorithm, the object detection algorithm based on deep learning has stronger robustness to complex scenarios, which is the hot direction of current research. According to the process characteristics of the object detection algorithm based on deep learning, it is divided into two-stage object detection algorithm and single-stage object detection algorithm, focusing on the problems solved by some classical algorithms and their advantages and disadvantages. In view of the problem of object detection, especially small object detection, the commonly used data sets and performance evaluation indicators are summarized; the characteristics, advantages, and detection difficulties of various common data sets are compared; the challenges faced by commonly used object detection methods and small object detection are systematically summarized; the latest work of small object detection methods based on deep learning is sorted out; and the small object detection methods based on multiscale and small object detection methods based on super-resolution are introduced. At the same time, the lightweight strategy for target detection methods and the performance of some lightweight models are introduced; the characteristics, advantages, and limitations of various methods are summarized; and the future development direction of small object detection methods based on deep learning is prospected.
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献