Exploring the Molecular Mechanism of Liuwei Dihuang Pills for Treating Diabetic Nephropathy by Combined Network Pharmacology and Molecular Docking

Author:

Wang Gaoxiang12ORCID,Zeng Lin23,Huang Qian23,Lu Zhaoqi23,Sui Ruiqing4,Liu Deliang2,Zeng Hua1,Liu Xuemei2,Chu Shufang2ORCID,Kou Xinhui2ORCID,Li Huilin2ORCID

Affiliation:

1. Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen 518033, Guangdong, China

2. Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China

3. The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong, China

4. Department of Oncology, Lishui District Traditional Chinese Medicine Hospital, Nanjing 211200, Jiangsu, China

Abstract

Background. Diabetic nephropathy (DN) is a common and serious complication of diabetes, but without a satisfactory treatment strategy till now. Liuwei Dihuang pills (LDP), an effective Chinese medicinal formula, has been used to treat DN for more than 1000 years. However, its underlying mechanism of action is still vague. Methods. Active compounds and corresponding targets of LDP were predicted from the TCMSP database. DN disease targets were extracted from the OMIM, GeneCards, TTD, DisGeNET, and DrugBank databases. Subsequently, the “herbal-compound-target” network and protein-protein interaction (PPI) network were constructed and analyzed via the STRING web platform and Cytoscape software. GO functional and KEGG pathway enrichment analyses were carried out on the Metascape web platform. Molecular docking utilized AutoDock Vina and PyMOL software. Results. 41 active components and 186 corresponding targets of LDP were screened out. 131 common targets of LDP and DN were acquired. Quercetin, kaempferol, beta-sitosterol, diosgenin, and stigmasterol could be defined as five crucial compounds. JUN, MAPK8, AKT1, EGF, TP53, VEGFA, MMP9, MAPK1, and TNF might be the nine key targets. The enrichment analysis showed that common targets were mainly associated with inflammation reaction, oxidative stress, immune regulation, and cell apoptosis. AGE-RAGE and IL-17 were the suggested two significant signal pathways. Molecular docking revealed that the nine key targets could closely bind to their corresponding active compounds. Conclusion. The present study fully reveals the multicompound’s and multitarget’s characteristics of LDP in DN treatment. Furthermore, this study provides valuable evidence for further scientific research of the pharmacological mechanisms and broader clinical application.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3