Human-Machine Cooperation and Path Planning for Complex Road Conditions

Author:

Zhou Guanghong1ORCID

Affiliation:

1. Department of Control Technology, Wuxi Institute of Technology, Wuxi, Jiangsu 214121, China

Abstract

With the rapid development of the information age, the development of industrial robots is also advancing by leaps and bounds. In the scenes of automobile, medicine, aerospace, and public service, we have fully enjoyed the convenience brought by industrial robots. However, with the continuous development of industrial robot-related concepts and technologies, human-computer interaction and cooperation have become the development trend of industrial robot. In this paper, the human-machine cooperation and path optimization of industrial robot in a complex road environment are studied and analyzed. At the theoretical modeling level, firstly, the industrial robot is modeled and obstacle avoidance is analyzed based on the kinematics of industrial robot; thus, an efficient and concise collision detection model of industrial robot is proposed. At the algorithm level, in view of the complex road conditions faced by industrial robots, this paper will study and analyze the obstacle avoidance strategy of human-computer cooperation and real-time path optimization algorithm of industrial robots. Based on the virtual target point algorithm, this paper further improves the problem that the goal of the traditional path planning algorithm cannot be fully covered, so as to propose the corresponding improved path planning algorithm of industrial robots. In the experimental part, based on the existing industrial robot system, the human-machine cooperation and path planning system proposed in this paper are designed. The experimental results show that the algorithm proposed in this paper improves the accuracy of obstacle avoidance by about 10 points and the corresponding convergence speed by about 5% compared with the traditional algorithm and the experimental effect is remarkable.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flexible Manufacturing Systems: CAD Programs to Simulate the Movements of Industrial Robots;2023 International Conference on Electrical, Communication and Computer Engineering (ICECCE);2023-12-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3