Research on the Evaluation Model of Educational Management Theory Based on Data Mining from the Perspective of Neural Network

Author:

Zheng Die1ORCID

Affiliation:

1. Public Affairs Department, Beijing Technology and Business University, Beijing 100048, China

Abstract

The improvement of the theoretical quality of education management is an indispensable part of a country’s education modernization. However, the existing research on the evaluation of educational management theory is still relatively small, and there is a lack of scientific educational management theory evaluation model. Designing a comprehensive and accurate educational management theory evaluation model has important theoretical value and practical significance. It is possible to process a lot of information in parallel using the artificial neural network method. By optimizing the artificial neural network, data mining of characteristic information data can be realized. Therefore, this paper uses neural network to conduct data mining on education management theory and conduct a comprehensive system evaluation of education management theory. At the same time, the traditional BP algorithm is improved. To train a neural network with large amounts of data, the BP algorithm uses a lot of gradient calculation, which takes a long time and often results in training going to extremes in the local area. BP neural networks are trained using the particle swarm optimization algorithm, and the backward propagation process in the BP algorithm is replaced with particle swarm iteration. To improve algorithm execution efficiency and speed up neural network training, a large number of gradient operations can be avoided. This can help overcome the limitations of the BP algorithm when dealing with large amounts of data. The improved BP algorithm is applied to the evaluation system of education management theory, and the quality evaluation prediction of management education theory is realized.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3