Modeling of an Electrical Energy Switching System in Multisource Power Plants: The Case of Grid Connected Photovoltaic and Wind Power Systems

Author:

Louossi Theodore1,Mbakop Fabrice Kwefeu1ORCID,Dadje Abdouramani2,Djongyang Noel1ORCID

Affiliation:

1. Department of Renewable Energy, National Advanced School of Engineering of Maroua, University of Maroua, Maroua, Cameroon

2. School of Geology and Mining Engineering, University of Ngaoundéré, Ngaoundéré, Cameroon

Abstract

This paper proposes a multisource power plant management strategy for the proposed structure. This power plant consists of photovoltaic, wind, and grid. The principle of this management strategy is based on the reference currents and defines two components of the current namely a harmonic component related to the harmonics contained in the load current and current called fundamental related to the fundamental of the load current. This proposed strategy allows the different renewable sources to supply the load partially or totally. The harmonic component performs the power quality function while the fundamental component feeds the load and injects the surplus production into the grid. The power management is done according to the established scenarios and responds to the demand of the load. The simulations were carried out with Matlab software, and these results show the performance of this strategy for this structure studied to fulfill the following functions: power supply to the load, power factor (PF) correction, harmonic elimination, reactive energy compensation, and injection in the network of a current with a low rate of harmonic distortion lower than 1% in accordance with the IEEE Std 519-2014 standard.

Publisher

Hindawi Limited

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TS fuzzy control of PV assisted single phase three phase induction motor drive for rural pumping applications;Transactions on Energy Systems and Engineering Applications;2024-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3